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Abstract—Workflows continue to play an important role in
expressing and deploying scientific applications. In recent years,
a wide variety of computational sites have emerged with shared
access to users. A user may not be able to complete a complex
workflow at a single site. It is thus beneficial to run different
tasks of a workflow on different sites. For such cases, judicious
scheduling strategy is required in order to map tasks in the
workflow to resources at multiple sites so that the workload
is balanced among sites and the overhead is minimized in
data transfer. The key challenge is that the data transfer rate
among sites varies based on the network capacity and load.
We propose a workflow scheduling technique that tackles the
multi-site task distribution challenge by using data movement
performance modeling. We applied this technique to schedule an
earth observation science workflow over three sites. Executed via
the Swift parallel scripting paradigm, we augmented its default
schedule and improved the time-to-completion by up to 52%.

I. INTRODUCTION AND BACKGROUND

Large-scale applications often involve repetitive data- and
compute-intensive experiments running over multiple remote
sites. These sites vary widely in system characteristics in-
cluding computation power, memory bandwidth, file system
throughput, and performance of the networks. With such
heterogeneity among sites, different tasks within the same
workflow may perform better at different sites. Additionally,
users are confronted with logistical constraints including allo-
cation time and software compatibility.

The dynamics resulted by task-resource adaptation makes
it difficult to identify an optimal schedule. To address this
issue, one needs to study two factors: (a) how computation
and data movement may change given a schedule, and (b) how
this change would affect a workflow’s overall time-to-solution.
This knowledge, however, often remains unknown until the
workflow is executed and profiled for a given schedule, making
it almost impossible to explore and optimize for a large
number of scheduling possibilities. Our specific contributions
in this paper are three-fold: 1) Development of the notion of
workflow skeletons to capture, explore, and analyze workflow
behavior with regard to dynamics of computation and data
movement; 2) Formulation of an algorithm to explore and
propose an optimized schedule, according to the modeled
workflow behavior; and 3) Integration of the workflow skeleton
and the scheduling algorithm into a workflow deployment
system.

An application is coded as Swift [1] scripts and run over
multiple sites. We show that the proposed workflow schedule
using our technique augments Swift’s default schedule and
saves up to 52% in time-to-solution. Swift [1] is an application-
level scripting framework designed for composing ordinary
programs into parallel applications. Applications encoded in

Swift have been shown to execute on multiple computational
sites via Swift coasters [2], [3] mechanism that implements the
pilot jobs paradigm. Swift provides a simple reactive resource
scheduling wherein, based on an initial ”wave” of jobs, it
records the per site job completion rate and adjusts the propor-
tionate number of jobs to be sent to these sites. Even though
Swift can use GridFTP [4], [5] for high-speed data movement,
it does not take data transfer time into account while picking
the sites for executing the tasks. Our approach takes data
transfer time into account while picking the execution sites.

SKOPE (SKeleton framework for Performance Explo-
ration) is a framework that helps users describe, model, and
explore a workload’s current and potential behavior [6]. It
asks the user to provide a description, called code skeleton,
that identifies a workload’s performance behaviors including
data flow, control flow, and computation intensity. The SKOPE
back-end explores various transformations, synthesizes perfor-
mance characteristics of each transformation, and evaluates the
transformation with various types of hardware models.

II. SKELETON-BASED MULTISITE WORKFLOW
SCHEDULING

Fig. 1. Skeleton-based workflow scheduling framework

Figure 1 illustrates the overall steps involved in our tech-
nique. The user provides a script in Swift, in which a workflow
is represented as a sequence of applications, each of which
consumes or produces a number of files. In addition to the
workflow description, the user needs to provide a workflow
skeleton using our extended SKOPE to describe the overall
performance properties of the workflow.

The skeleton models the workflow’s behavior, including
the application’s computation resource requirements, as well
as characteristics of the input and output files. The skeleton
automatically generates a task graph, where a task refers to
one or more applications grouped as a scheduling unit. The978-1-4799-0898-1/13/$31.00 c© 2013 IEEE



TABLE I. EXECUTION SITES AND THEIR CHARACTERISTICS

Site CPU Cores CPU Speed Usable Memory per Node Allocation Remarks
LCRC Blues 310X16=4960 2.60GHz 62.90 GB unlimited Early access, 35 jobs cap

XSEDE Stampede 6400X16=102400 2.70GHz 31.31 GB limited 50 jobs cap
RCC Midway 160X16=2560 2.60GHz 32.00 GB limited Institute-wide access

task graph depicts the tasks’ site-specific resource requirements
as well as the data flow among them. Such a task graph is
then used as input to a scheduling algorithm, which also takes
into account the resource graph that describes the underlying
hardware at multiple sites and the network connecting them.
The output of the algorithm is an optimized mapping between
the task graph and the resource graph, which the scheduler
then uses to dispatch the tasks.

TABLE II. SYNTAX FOR WORKFLOW SKELETONS

Macros and Data Declarations
File type and size (in KB) :MyFile N

Constant definition :symbol = expr
Array of files :type array[N][M]

Variable def./assign var = expr
Variable range var name=begin:end(exclusive):stride

Control Flow Statements
Sequential for loop for var range {list of statements}

Parallel for loop forall list of var ranges {list of statements}
Branches if(conditional probability){list of statements}

else{list of statements}
Data Flow Statements

file input/load ld array[expri][exprj ]
file output/store st array[expri][exprj ]

Characteristic Statements
Run time (in sec.) comp T

Task description
Application definition def app(arg list){list of statements}

Application invocation call app(arg list)

A. Workflow Skeleton and Task Graph

Given a workflow, its skeleton summarizes the high-level
semantics that relate to its performance behavior. The syntax of
a workflow skeleton is summarized in Table II. In Figure 2(a),
we show the script for the workflow. Its skeleton is listed in
Figure 2(b). The skeleton is structured identically to its original
workflow script in terms of file types, application definitions,
and the control and data flow among the applications. The
size of each type of file are summarized in lines 3-4 of the
skeleton. An example skeleton description of an application is
demonstrated by lines 17-35 in Figure 2(b).

The skeleton is parsed by SKOPE into a data structure
called the block skeleton tree (BST). Figure 2(c) shows the
BST corresponding to the skeleton in Figure 2(b). Each
node of the BST corresponds to a statement in the skeleton.
Statements such as application definitions, loops, or branches
may encapsulate other statements, which in turn become the
children nodes. The loop boundaries and data access patterns
can be determined later by propagating input values. Given the
high-level nature of workflows and the structural similarity be-
tween workflow scripts and skeletons, generating the workflow
skeleton can be straightforward and may be automated in the
future by a source-to-source translator.

Figure 3 illustrates the task graph generated from the
workflow skeleton in Figure 2(b). Nodes refer to tasks and
edges refer to data movements. A node is annotated with
the amount of computation resources, or the execution time,

needed by the corresponding task for each available system.
An edge is annotated by the amount of data that is transferred
from the source node to the sink node.

Fig. 3. Task graph for the workflow shown in Figure 2(a).

B. Procedural Task Graph Generation

Generating a task graph from a workflow skeleton involves
three major steps. First, we obtain the data footprint for each
task. Second, we construct the data flow among dependent
tasks. Third, we derive the symbolic expression to express the
execution time of a task over different systems.

A critical component of our technique is the data movement
analysis, for which we apply array section analysis using
bounded regular section (BRS) [7]. BRS has been convention-
ally used to study stencil computation’s data access patterns
within loops. It is adopted in our study to analyze data access
patterns over arrays of files. We refer to the range of loop
iterators as a tile (T) and the set of accessed array elements as a
pattern (P). For example, suppose A is a 2-D array of files and
an application accesses A[r][c] in a nested for loop with two
iterators, r and c. The tile corresponding to the loop is denoted
as T(r, c) = {r : 〈rl : ru : rs〉; c : 〈cl : cu : cs〉}, where each
of the three components represents the lower bound, upper
bound, and stride, respectively. The overall pattern accessed
within this loop is denoted A[〈rl : ru : rs〉][〈cl : cu : cs〉],
which is summarized by P(A[r][c],T(r, c)). To obtain the data
footprint of a task, we identify its corresponding node in the
BST and obtain the tile T corresponding to one iteration of
all loops in its ancestor nodes (i.e., the outer loops) and all
iterations of its child nodes (i.e., the inner loops). Given an
access to a file array, A, we apply T to obtain a pattern,
P(A,T), which symbolically depicts the data footprint of the
task.

The resulting task graph is output in the form of an adja-
cency list which is next passed to the scheduler algorithm to
generate an optimized mapping among the tasks and resources.



Fig. 2. Workflow script (a), skeleton (b), and the corresponding block skeleton tree (c) for a pedagogical workflow.

C. Multisite Scheduling

We use a joint scheduling algorithm [8] that takes into
account both compute resources and network paths. Our al-
gorithm considers both resources holistically by converting a
scheduling problem into a network flow problem. In order
to schedule parallel jobs in a workflow while considering
concurrently runnable jobs at a compute resource, a new
notion of task-resource affinity has been devised by taking
into account the number of concurrently runnable jobs at
computation sites. Task clustering based on our algorithm is
discussed later in this section.

Our scheduling algorithm also needs a resource graph
which describes the underlying hardware architecture to gener-
ate an optimized schedule. Figure 4 (a) illustrates an example
of the resource graph. Nodes and edges denote compute
resources and network paths among those resources. Even
though a network path can span multiple physical network
links, we use only one logical link between two sites because
we cannot setup paths at our discretion in these experiments.
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Fig. 4. (a) Resource graph model (b) Resource graph in our experiments.

Table III shows network bandwidth among our execution
sites. The network bandwidths among them is measured by
iperf benchmark tool. Figure 4 (b) is the resource graph
corresponding to Table I. The bandwidth values in Table III
are associated with edges in Figure 4.

TABLE III. DISK-TO-DISK BANDWIDTHS BETWEEN SITES

Site Blues Stampede Midway
Submit Host 896 Mbit/s 592.88 Mbit/s 430 Mbit/s

We next set the resource capacities, Cn, which represents
computation power at site n, associated with nodes in Figure 4.
di denotes the amount of compute resource that task i demands
and di is associated with task i. So di

Cs
represents how fast a

task demand, di, can be processed by compute resources at site
s, Cs. Cs and di are relative values. To describe that task i
takes 1 sec at compute resource site s, we can assign either 100
or 10 to both of Cs and di. We have execution time of a task i
on site s, tis through performance modeling. Equation 1 is task-
resource affinity equation where CEs is a random variable of
the number of concurrently runnable tasks at site s. We define
task-resource affinity as tis

E(CEs)
. tis

E(CEs)
is the expected run

time per task if multiple tasks are run at computation site s.
For example, if 10 same parallel tasks are run at a site that
can run 10 tasks at the same time, the expected run time per
task is one tenth of the tasks’s run time.

tis
E(CEs)

=
di
Cs

(1)

Equation 1 means task-resource affinity equals di

Cs
, which is

the runtime of task i at site s. We can thus set Cs for a
computation resource site with fewest computation resource
to 100. Then for each task, we can get di and assign this to
the corresponding task in the workflow. To compute Cn, when
n 6= s, we can use Equation 2, where T is a set of tasks.
Since Cn can be arbitrary values relative to di according to
Equation 1, we should normalize Cn regarding the base case
by Equation 2.

Cn = 100× 1

|T |
∑
i∈T

tis
tin
· E(CEn)

E(CEs)
(2)

Equation 2 averages affinities of tasks to resources. We can
easily extend our model such that resource affinity per task is
considered. For instance, while t1 can be executed two times
faster on site 1 than on site 2, t2 may have similar execution
times regardless of sites. We can define dis representing the
demand of task i at site s so that we can assign different
demands of tasks per each resource to the edges of the auxiliary
graph. [8]

The task graph in Figure 2 (c) has 634 parallel tasks, which
could result in much higher execution time of the scheduling
algorithms. In this paper, we partition the parallel tasks into



10 groups with same number of tasks, and use this reduced
task graph for scheduling.

III. EXPERIMENTAL SETUP

We use a mock application–MODIS (modis.gsfc.nasa.gov),
derived from NASA’s MODIS (Moderate Resolution Imaging
Spectroradiometer). The workflow model for this application
is depicted Figure 5 shows the workflow model with data and
job numbers for each computational stage.

Fig. 5. MODIS application workflow depiction.

We selected three execution sites–XSEDE Stam-
pede (www.xsede.org), LCRC (Laboratory Computing Re-
source Center) Blues (www.lcrc.anl.gov/about/blues) and RCC
(Research Computing Center) Midway (rcc.uchicago.edu) to
demonstrate our approach.

IV. EVALUATION

In this section we present an evaluation of our approach.
We use the MODIS application workflow encoded in Swift
for these evaluations. We chose 16 cores on each of the
three clusters (Blues, Midway and Stampede) resulting in a
capability of running 48 application jobs in parallel across
these clusters. We use a remote machine for submissions. The
input data is stored on the disk on this remote machine. We ran
the application on individual sites to measure the makespan
time on each site. This involves the total amount of time
spent in data movement, execution, site-scheduler overhead
and Swift’s startup and shutdown overhead. Figure 6(a) shows
the application makespan for each site. The least execution
time on Blues can be attributed to a higher bandwidth from
submit host and the lightly loaded queues.

We then evaluate the workflow performance over multiple
sites. In the first set of experiments, we use the default
scheduler in Swift and merely tune a configuration parameter,
“throttle”, which controls the number of parallel jobs to send
to sites and hence the number of parallel data transfers to sites.
The default scheduler distributes an equal number of jobs to
each of the execution sites. Note that in figure 6(b) higher
“throttle” results in larger makespan. This is because higher
“throttle” value results in more parallel jobs and thus more
input data files in each batch sent to the execution sites.

In the second set of experiments, we alter the Swift script
and distribute the jobs according to a schedule proposed by
our scheme. The first such schedule, shown by the bar labeled
‘sched1’ takes the data movement into account assigns 256,
124 and 256 jobs to Stampede, Midway and Blues respectively.
The second proposed schedule takes the difference in job
execution time of ‘landuse’ and ‘colormodis’ into account and
assigns 124, 256 and 256 jobs to Stampede, Midway and Blues

respectively. Based on the resource description, our scheme
automatically picks the optimal “throttle” value. Note that from
the results in figure 6, we achieve a minimum makespan with
an informed schedule and saving the effort of fine tuning with
throttle changes. Our scheme achieves a 52% improvement in
makespan over the default scheme (‘th:123’ in the Figure) and
a 10% improvement over the best performance obtained with
manual tuning (‘th:48’ in the Figure).

V. RELATED WORK

Large scale applications have been shown to benefit sig-
nificantly on heterogeneous systems [9] for data-intensive
science [10] and under multiple sites infrastructure [11]. There
has also been much prior work on workflow management and
performance modeling, which we discuss below.

Some of the well-known workflow management systems
include Condor DAGMan [12], Pegasus [13] and make-
flow [14]. Condor DAGMan provides a minimal set of key-
words for directed acyclic graph (DAG)-based workflows.
The workflow model of Condor DAGMan does not require
additional information other than task precedence requirements
given by a DAG. Pegasus requires task execution time infor-
mation related to each task in a workflow. Swift provides a rich
set of keywords for parallel task execution. Differences among
workflow management systems result in different scheduling
capabilities. HEFT or other heuristics use averaged execution
times of a task over every possible resources or try earli-
est/latest completion task first approach. These heuristics do
not consider the resource affinity per task effectively.

Simulation studies on multi-site resources have been done
in the past such as Workflowsim [15] on generic wide-
scale environments. While they provide detailed analysis of
workflow deployment, simulations take a significant amount of
time. Our work models the high level behavior of workflows
so that the scheduler can suggest an optimized schedule online
when deploying a workflow.

Overall, our approach based on workflow skeleton captures
the application characteristics while offloading the execution
responsibility to Swift which leads to a better division of
responsibility. This approach makes our work distinct and a
valuable contribution to e-science community.

Performance modeling has been widely used to analyze
and optimize workload performance. Application or hardware
specific models have been used in many scenarios to study
workload performance and to guide application optimiza-
tions [16], where applications are usually run at a small
scale to obtain knowledge about the execution overhead and
their performance scaling. Snavely et al. developed a general
modeling frameworks [17] that combine hardware signatures
and application characteristics to determine the latency and
overlapping of computation and data movement. An alternative
approach uses black-box regression, where the workload is
executed or simulated over systems with different settings,
to establish connections between system parameters and run
time performance [18], [19]. SKOPE [6] provides a generic
framework to model workload behavior. It has been used
to explore code transformations when porting computational
kernels to emerging parallel hardware [20]. We apply the same
principles in modeling kernels and parallel applications and
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Fig. 6. Makespan times of MODIS application execution

extend SKOPE to model workflows. In particular, we propose
workflow skeletons and use that to generate task graphs, which
are in turn used to manage workflow.

VI. CONCLUSION

In this paper, we proposed a multi-site scheduling approach
for scientific workflows using performance modeling. We
introduced the notion of workflow skeletons and extended the
SKOPE framework to capture, analyze and model the com-
putational and data movement characteristics of workflows.
We developed a resource and task aware scheduling algorithm
that utilizes the task graph generated using the workflow
skeleton and the resource graph generated using the resource
description. We incorporated our approach into Swift, a script-
based workflow framework and showed that our approach can
improve the total execution time of the workflows by as much
as 52%.
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